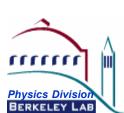
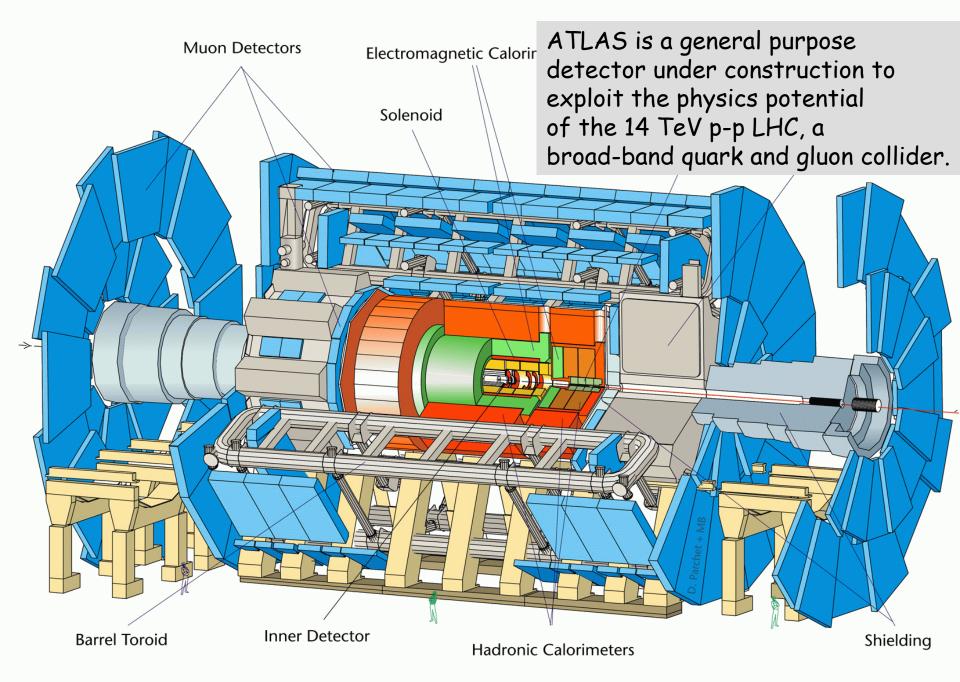


ATLAS Physics Workshop

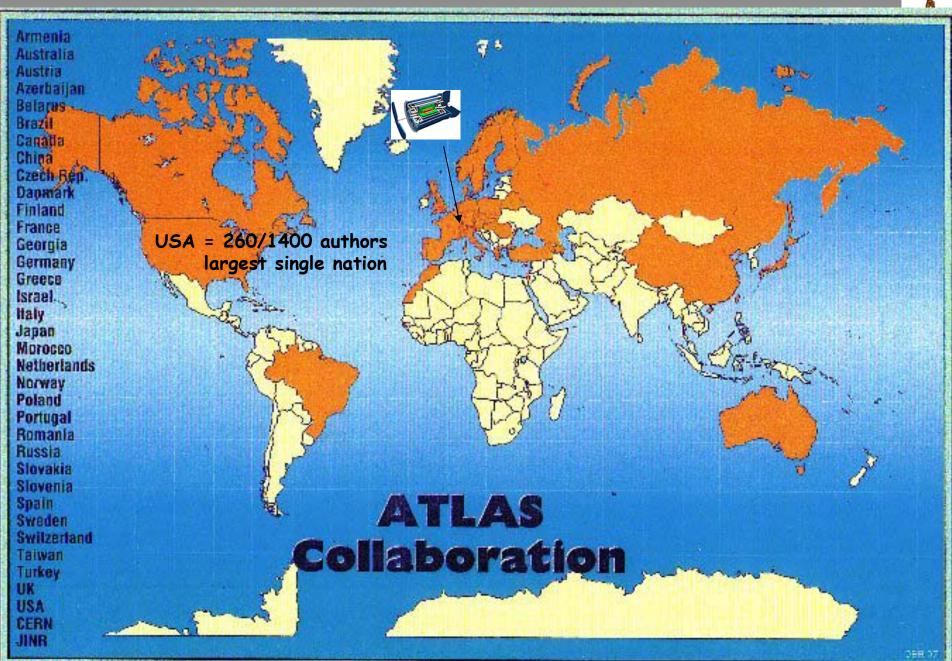

ATHENS, Greece May 20-25, 2003 Part I: Summary of Standard Model Physics


- 250 participants
- 100 talks jammed into 35 hours over 4 days.
 - Intro
 - Detector Staging & Physics Commissioning
 - EW, QCD, Top, Beauty physics
 - The first year of physics

... Davide to talk about Higgs, Exotics, Susy, Black holes, ...

4th Physics Workshop

- Triest 1995
- · Grenoble 1998
- · Lund 2001


The ATLAS Detector

34 Nations contribute to the ATLAS Collaboration

- Most significant changes in the detector layout since the 1999 TDR
 - pixel system is fully insertable (independent of ID)
 - All pixels are now the same size,
 - b-layer now uses z-pitch of 400 μm instead of 350 μm.
 - The beam-pipe grew, moving the pixel b-layer from 4.3cm to 5cm.
 - Enlarged central crack, holes for access and services.
- Machine parameters

 - → Changes affect B-physics programme most.

ATLAS cavern was handed over June 4, '03.

Physics Division

Cost to Completion 68.2 MCHF (≈\$55M)

(construction completion, commissioning and integration)

- Our resources: ~ 50 MCHF
- 10-21.7 MCHF, have to be covered by redirecting resources from staging and deferrals
 - Changes in the Initial detector layout
 - Changes in the trigger strategy
 - Trigger deferrals: less processors than foreseen
 - Event rate from LVL1 B-triggers has to be reduced
 - Full TRT track scan at LVL2 is not feasible → go to RoI-driven strategy at HLT even for the B-triggers

HLT Staging: New Trigger Levels

Reminder: major changes (LVL1 and HLT)

→ e20i → e25i

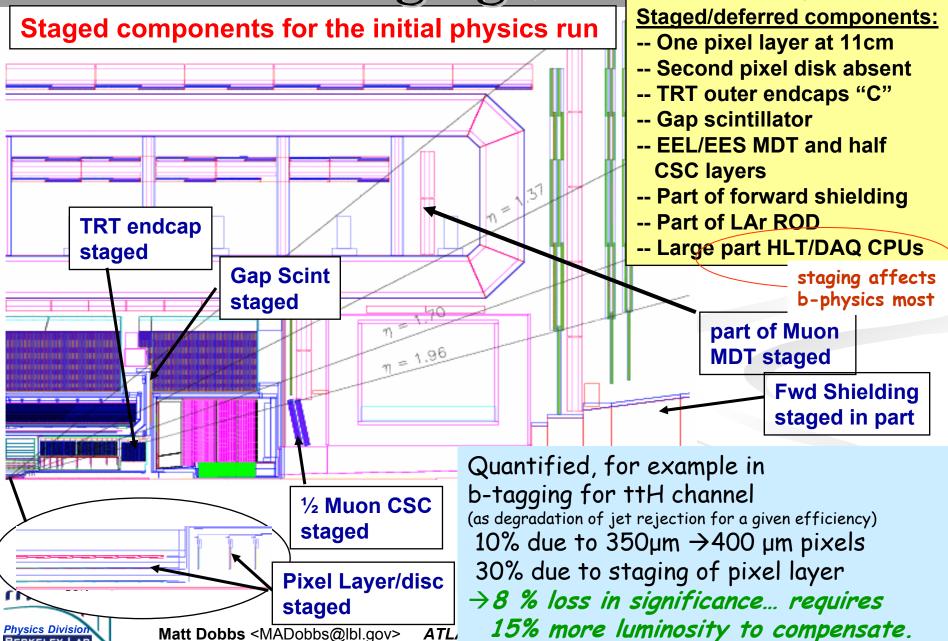
 \rightarrow 3J75 \rightarrow 3j165

 $\rightarrow \gamma 40i \rightarrow \gamma 60i$

 \rightarrow 4J55 \rightarrow 4j110

 \rightarrow MU6 \rightarrow MU20

 \rightarrow j50+xE50 \rightarrow j70+xE70


 \rightarrow J180 \rightarrow j400

 $\rightarrow \tau 20 + xE30 \rightarrow \tau 35 + xE45$ + prescaled triggers.

- \rightarrow (none) \rightarrow 2J350
- single muon "B-physics" trigger is essentially gone.
 - ⊕ left with B→μμ rare decays and B→ $J/\Psi(\rightarrow μμ)K^0$
 - \odot bad in particular for channels not accessible at B-factories, $B_s \rightarrow D_s \pi$
- NO safety margin in LVL 1 bandwidth for high- P_T physics. (formerly factor 2 safety margin)
- jet triggers now at the limit for overlap with Tevatron
 - © CDF/DO dijet mass reach 700-1000 GeV for 15 fb-1

Detector Staging ("initial detector")

Commissioning

2007: first circulating LHC beam

Phase A

June 2003: UX15 Cavern transferred to ATLAS

System at ROD level. Systems for LVL1, DCS and DAQ. Check cable connections. Infrastructure. Some system tests.

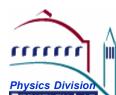
> Phase B Calibration runs on local systems.

> > Phase C Systems/Trigger/DAQ combined.

> > > Detector fully

2006:

Aug 2006 installed

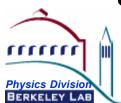

Phase D

10/06

Commissioning

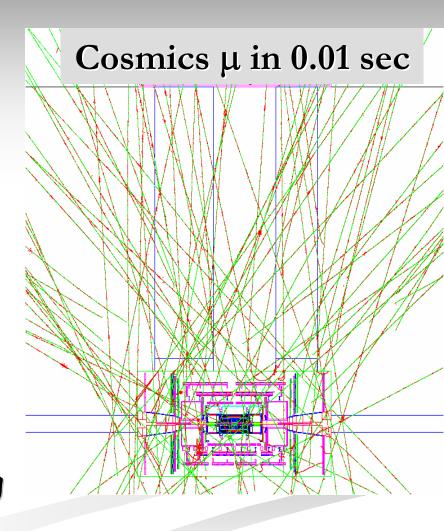
"Physics

Global commissioning. Cosmic ray runs. Initial off-line software. Initial physics runs.

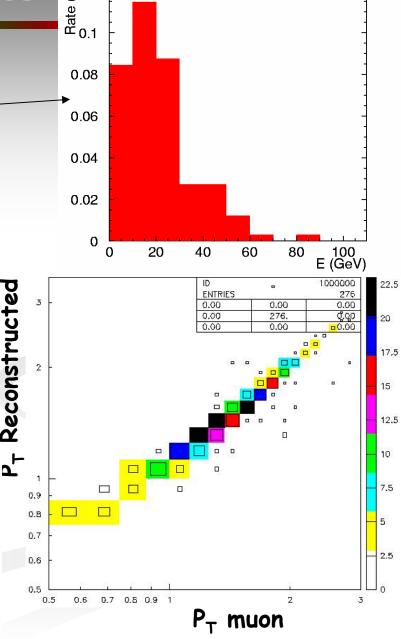


03/06

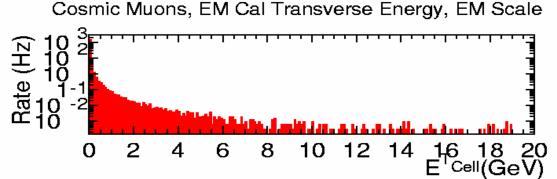
Physics Commissioning


- PHASE D: Global detector commissioning
 - Cosmic run (40 days, end of 2006)
 - One beam circulating in the machine (~ 2 Months, APR 2007)
 - beam/gas interactions
 - beam halo
 - First collisions (mid-late 2007)
 - in situ physics control samples: e.g. Z→ee, μμ, tt→semileptonic
- Commissioning our understanding of the Physics at 14 TeV
 - event rates (remember there is NO margin left in the trigger)
 - Gluon PDF at high x
 - basic SM processes: covered later
 - minimum bias, underlying event, global event properties
 - measure W,Z,tt, QCD jets cross sections to 10-20%
 - measure W mass, top mass to few %

Commissioning with Cosmics



- 40 days of cosmic running end 2006
 - electronics and DAQ shake down
 - map dead cells
 - first real test of reconstruction Software
 - commission LVL1 trigger
 - test track finding in HLT
 - muon resolution
 - Calorimeter EM energy scale
- Full G3 simulation in place, includes ATLAS, caverns, surface bldgs, etc.
- Trigger= LVL 1 RPC with timing adjustments


Commissioning with Cosmics

- rate of through going muons with RPC & pixel hits is >> 0.1 Hz.
- Cosmics FULL Simulation
 - 3 M muons entering ATLAS hall
 - 300 events with signals in pixels
 - 276 reconstructed tracks in MuSpec(Muonbox)
 - Rate in EM calorimeter with E_T (cell)
 > 5 GeV is 0.7 Hz.

LBL RPM June 2003

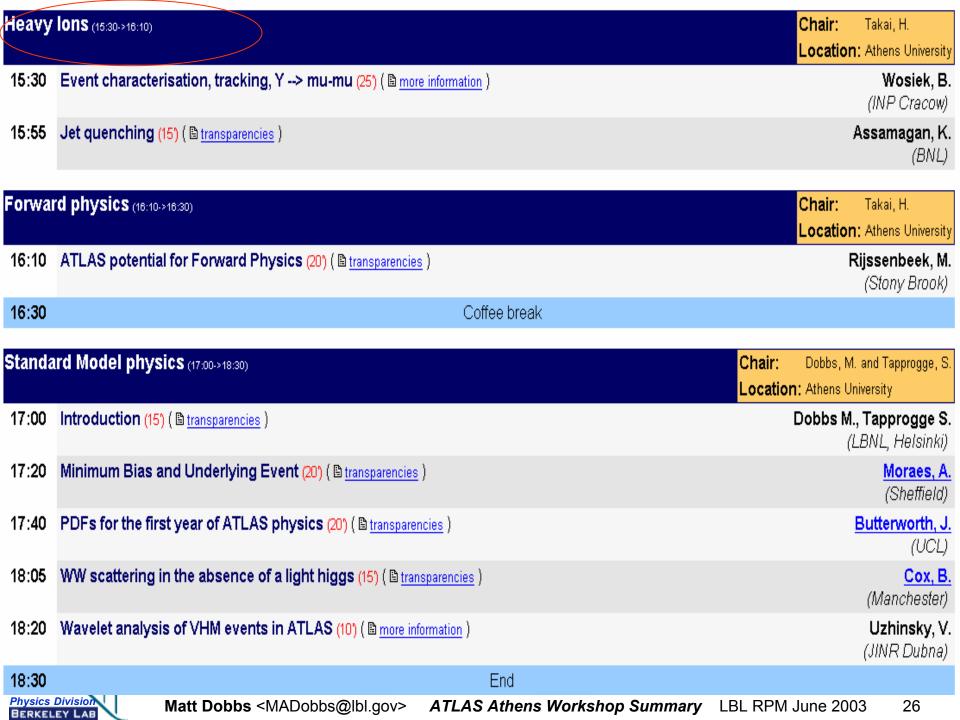
[∑]0.12

Beam Halo / Beam Gas Collisons

Beam halo rates are large, triggering can be difficult.

Particle	Rate
All	1750 kHz
h [±]	1515 kHz
n	130 kHz
μ	105 kHz
μ, E> 10 GeV	16 kHz
μ, E>0.1 T eV	1 kHz
μ, E>1 TeV	10 Hz

Triggered Beam Halo Muon Rate


Physics Division

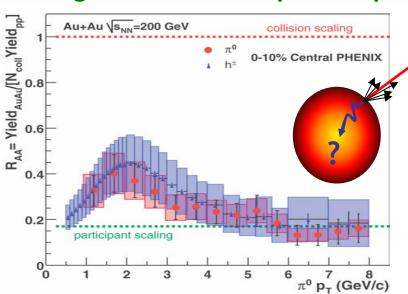
Detector	Rate (F.On)
MDT endcap	136,0 Hz
Pixel	0,015 Hz
SCT	0,1 Hz
TRT	0,2 Hz
EM, HEC	0,5 Hz
Tile	41 Hz

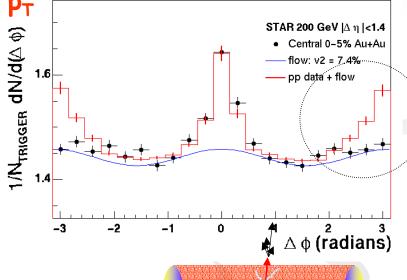
Matt Dobbs <MADobbs@lbl.gov>

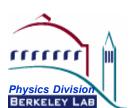
ATLAS Athens Workshop Summary LBL RPM June 2003

Heavy Ion Physics at LHC

- 5.5 TeV Pb-Pb collisions at L=10²⁷ (8kHz) $(RHIC \rightarrow 200 GeV)$
- run for "few" days in 2007, longer nb-1 in 2008.
 - Initial energy density about 5 times higher than at RHIC.
 - Lifetime of a hot & dense matter much longer 10-15 fm/c at LHC as compared to 1.5-4 fm/c at RHIC
 - Access to truly hard probes with sufficiently high rates $p_T > 100 \text{ GeV/c}$ (at RHIC $p_T \leq 20 \text{ GeV/c}$) copious production of b and c quarks
 - LHC will access a Q2 regime where perturbative QCD is thought to become much more quantitatively precise than at RHIC
- Large US contingent (BNL, Columbia...), LoI submitted to DOE last year. Submission to CERN this summer.

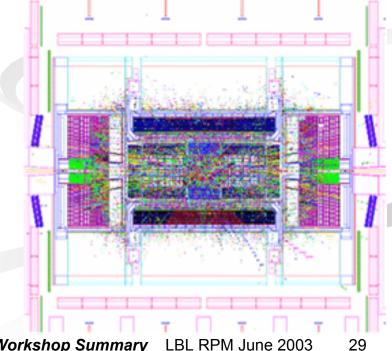

Heavy Ion Physics with ATLAS




□ "Evidence from d+Au measurements for final-state suppression of high pT hadrons in Au+Au collisions at RHIC", announced by LBL's Peter Jacob's yesterday.

Disappearance of back-to-back high p_T jet correlations

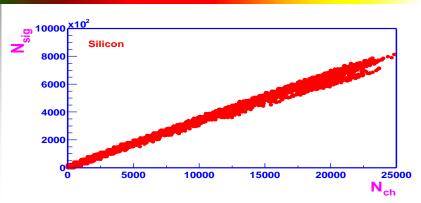
Huge azimuthal asymmetry at high p_T

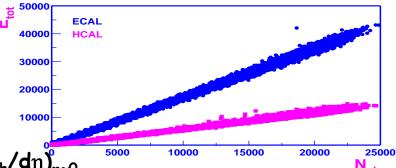

ATLAS is an excellent detector for high p_T physics and jet studies

ATLAS HI

- (largely by chance) ATLAS is a great HI Detector for studying HARD PROBES.
 - hermetic (ALICE is not)
 - finely segmented Calorimetry
 - large acceptance muon system (heavy quark quarkonium suppression Upsilon→µµ resonances)
 - Si Tracker
- HI Simulations:
 - Pythia events embedded in HIJING \rightarrow G3 \rightarrow ATRECON.
- Can we track?

 - < 20% in strips
 - TRT unusable.


Global Measurements



One day measurements:

 N_{ch} , $dN_{ch}/d\eta$, ΣE_{T} , $dE_{T}/d\eta$, b

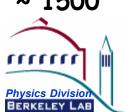
- > Constrain model prediction
- > Indispensable for all physics analyses

This is new territory, the predictions for $(dN_{ch}/d\eta)_{n=0}^{0}$ dN/dn are all over the place:

~ 6500

HIJING: with quenching, with shadowing

~ 3200

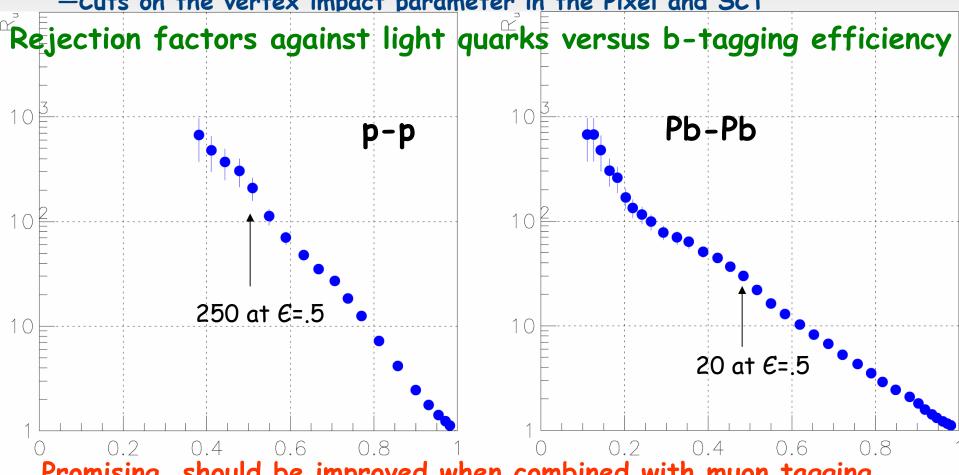

HIJING: no quenching, with shadowing

~ 2300

Saturation Model (Kharzeev & Nardi)

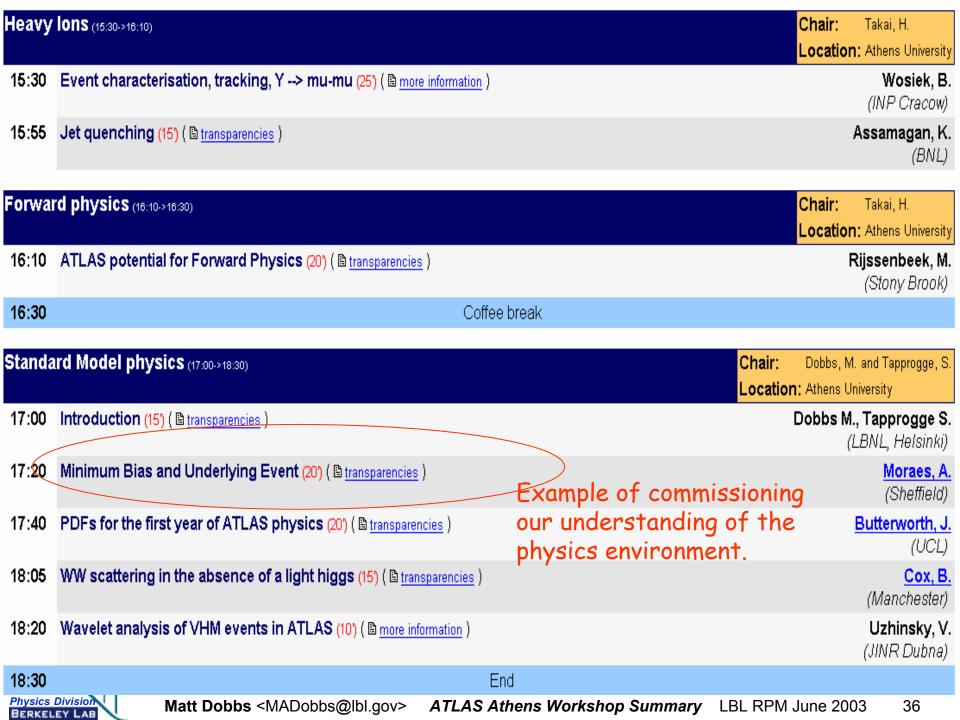
~ 1500

Extrapolation from lower energy data


B-jet Tagging in HI

Preliminary study:

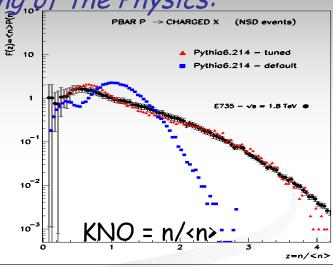
- -Standard ATLAS algorithm for pp
- -Higgs events embedded into pp or Pb-Pb event

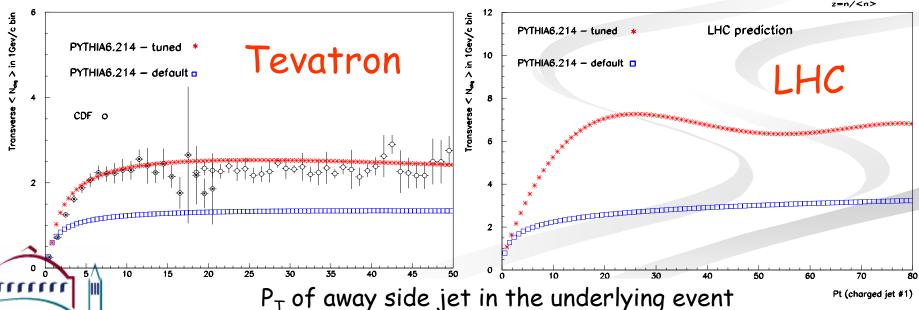

—Cuts on the vertex impact parameter in the Pixel and SCT

Heavy Ions

- ATLAS is ideal for examining Heavy Ion collisions using "Hard (high P_{T}) probes"
- tracking is feasible with the pixels and strips (<1,20%)</p> occupancy)
 - lots of good physics to do even from day one using simply the number of hits.
- tracking with the muon system up to $P_{T}=15-20$ GeV (need to work harder above that) (not shown)
 - important for Upsilon resonances → μ μ
- b-tagging is feasible, but rejection factors are considerably lower than for p-p
- Demonstrated jet reconstruction above E_T =40 GeV
 - jet quenching (not shown)
- ATLAS plans to submit letter of intent to CERN this summer

Min Bias / Underlying Event




Example of Commissioning our understanding of the Physics:

Extrapolating Predictions for minimum Bias and the Underlying Event to 14 TeV

→ very sensitive to the Monte Carlo tune.

has big effect on the way we reconstruct (i.e. forward jets in vector boson fusion)

Physics Division

Matt Dobbs <MADobbs@lbl.gov>

ATLAS Athens Workshop Summary LBL RPM June 2003

B Physics

- Challenging time for B-physics
 - detector layout changes affecting b-physics most
 - larger beam pipe, larger pixel size in b-layer, missing pixel and TRT layers/discs
 - HLT staging compromises b-physics trigger rate
 - → affects in "Low luminosity" period, when b-physics lives
 - low lumi \rightarrow 2.10³³ cm⁻²s⁻¹
- old style selection:
 - μ[±] P_T>3 GeV,
 - e[±] P_T > 1 GeV
 - objects (J/Ψ, ...) from Event filter

new strategy:

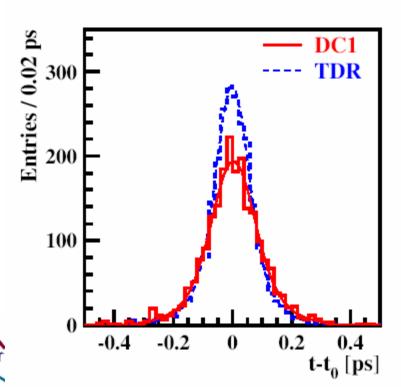
- require at LVL1, in addition to single μ trigger, a second muon, a JET or an EM ROI, then reconstruct at LVL2 and EF within ROI
- Start with a di-muon trigger for higher luminosities LHC fills.
- Add further triggers (hadronic final states, final states with electrons and muons): in the beam coast for the low luminosity fills.
- always fill the available bandwith in the HLT system.

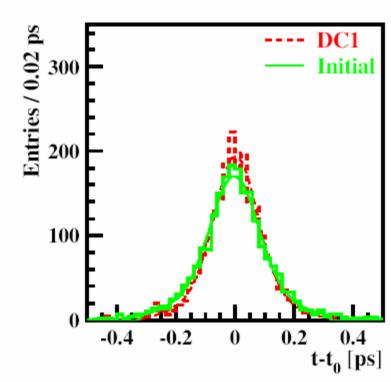
1% of LHC collisions will produce a bb pair!

B_s Oscillations, $B_s \rightarrow D_s \pi$

 B_s^0 and \bar{B}_s^0 are superpositions of two mass eigenstates B_H , B_L flavour non-conservation in charged weak-current interactions $\implies B_s^0 \rightleftarrows \bar{B}_s^0$ transitions with frequency $\propto \Delta m_s \equiv m_{\rm H} - m_{\rm L}$

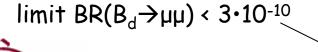
Experimental status:


- $B_s^0 \bar{B}_s^0$ oscillations not yet observed
- Combined LEP & Tevatron limits
 - PDG 2002, published results $\Delta m_s > 13.1 \ \mathrm{ps^{-1}} \ \mathrm{@} \ 95\% \ \mathrm{CL}$, sensitivity @ 95% CL of 13.3 $\mathrm{ps^{-1}}$
- expectation: "difficult for SM to accommodate Δm_s above ~ 25 ps⁻¹"
- 'old' ATLAS reach with 30 fb⁻¹ \rightarrow 29.5 ps⁻¹ (5 σ) EPGdirect CN3 (2002) 1
 - $B_d^0 \bar{B}_d^0$ oscillations well-measured: $\Delta m_d = 0.489 \pm 0.008~\mathrm{ps}^{-1}$


measurement requires good proper-time resolution (good impact-parameter, pTresolutions) which strongly depend on the detector geometry.

Affect of Layout changes on Proper time resolution

- \sim 25%("DC1 layout") 50%(initial layout) degradation in B_s^0 proper time resolution
 - ⊕ (similar result for $B^0_s \rightarrow J/\Psi K^0_s$ analysis)
- Δm_s resolution typically scales as $1/\sigma_t(B_s^0)$
 - implies $\Delta m_e > 30 \text{ ps}^{-1} \rightarrow 20-24 \text{ ps}^{-1}$ for staged ATLAS with 30 fb⁻¹



- detector layout changes and staging has substantially reduced the ATLAS potential for precision b-physics measurements such as Δm_s
 - This is not just a trigger issue—even if the events were there on tape, the detector performance is also degraded.
- Note that the ATLAS potential for rare decays is largely unaffected, since many of those channels are "self-triggering" (di-muon final states). ATLAS will be an excellent place to study rare B-decays

The expected signals and backgrounds for rare muonic decays; 30 fb⁻¹ corresponds to three years low-luminosity running and 130 fb⁻¹ to an additional one year at high luminosity

Channel	B.R.	Signal	Background	
After 30 fb ⁻¹ $B_d \rightarrow \rho^0 \mu \mu$ $B_d \rightarrow K^{*0} \mu \mu$ $B_s \rightarrow \phi^0 \mu \mu$	10^{-7} 1.5×10^{-6} 10^{-6}	220 2000 410	950 290 140	
After 130 fb ⁻¹ $B_d \to \mu\mu$	1.5×10^{-10}		753	

4.3 σ observation \longrightarrow $B_s \rightarrow \mu\mu$

753

 3.5×10^{-9} 119

	Location: Athens University
11:30 Introduction (15) (transparencies)	<u>Parsons, J.</u> (Nevis, Columbia)
11(45 measurement of top mass (15) (transparencies)	Cobal, M. (University of Udine)
12:00 Top reconstruction with DC1 data (15) (☐ transparencies)	Kostioukhine, V. (CPPM Marseille)
12:15 KK gravitons and top (15) (to transparencies more information)	Simak, V.

12:45 Measurement of the top electric charge (15) (transparencies)

13:00 Lunch

ttbar spin correlations (15) (transparencies)

Top physics (11:30->13:00)

12:30

Physics Division
BERKELEY LAB

Lunch

Now that CDF and DO have proven that the top quark STILL EXISTS,

Chair:

Cobal, M. and Parsons, J.

(Czech Technical University)

(Czech Technical University)

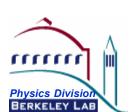
(Comenius University)

what can we, at the LHC, do with it?

Smolek, K.

Tokar, S.

Top Physics



- - @ fundamental role for radiative

is big > unique window through which to study fermion physics and probe beyond the S.M.

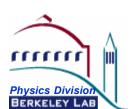
$$\sigma_{tt}^{LHC}$$
 = 833 pb = 100 $\sigma_{tt}^{Tevatron}$

- (reverse at Tevatron)
- \odot Measure σ_{tt} to < 10% (stat.) with few days of lumi!
 - # even without b-tagging
 - **#** Fit to m(jjb) spectrum provides σ measurement $\Delta \sigma_{\text{stat}} < 7\%$
 - **#** important for
 - jet scale calibration with $W \rightarrow jj$, measurement of E_T^{miss}
 - study of high P_T isolated e[±], μ[±]
 - b-tagging commissioning, optimization and efficiency evaluation

The view from on TOP

Top Mass is fundamental Parameter

$$M_{\rm W} = \sqrt{\frac{\pi\alpha_{\rm em}}{\sqrt{2}G_{\rm F}}} \frac{1}{\sin\theta_{\rm W}\sqrt{1-\Delta r}}$$
 (expectation, $\delta M_{\rm W} \sim 15$ MeV)


special role as the heavy fermion.

radiative corrections

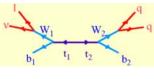
since G_F , a_{EM} , $sin\theta_W$ are known with high precision, precise measurements of m_{top} and m_W allow constraining Higgs mass (weakly because of logarithmic dependence)

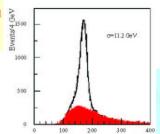
In the single lepton channel, where we plan to measure m(top) with the best precision:

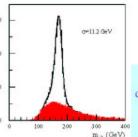
<u>Period</u>	evts	δM _{top} (stat)
1 year	3×10 ⁵	0.1 GeV
1 month	7.5×10 ⁴	0.2 GeV
1 week	1.9×10 ³	0.4 <i>GeV</i>

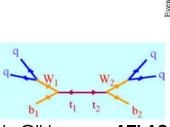
Top Mass Measurement

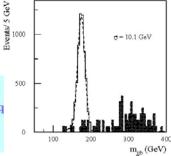
semi-leptonic

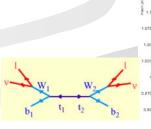

- clean sample background dominated by combinatorics
- only one top reconstr.
 - BR~30%,
 - ~2.5x10⁶ evts
- Kinematic fit
 - Selection effic. = 5%
 - 126k evts/10 fb-1
 - S/B ~65
 - $\Delta m_{syst} = 0.9 \text{ GeV}$
 - b-jet energy scale and FSR dominate

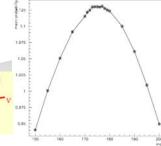

pure hadronic channel

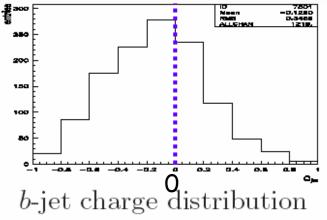

- huge QCD background
- both tops reconstructed
 - BR~44%,
 - \approx ~3.5×10⁶ evts
- High pT (t) > 200 GeV selection & kinematic fit $(M_W \text{ and } M_{+1} = M_{+2})$ constraints)
 - 3300 evts/10 fb-1
 - S/B = 18/1
 - $\Delta m_{stat} = 0.2 GeV$
 - $\Delta m_{syst} = 3 GeV$

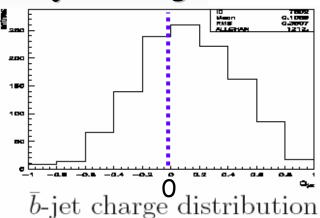

dilepton channel


- pure sample
- indirect M. measurement
 - BR~5%,
 - ~0.4x10⁶ evts
- M₊ estimator based on maximum MC probability
 - 80000 evts/ 10 fb-1
 - S/B = 10
 - $\Delta m_{syst} = 1.7 \text{ GeV}$ (PDF, b-quark Frag. dominates)









Measurement of top quark charge

- Tevatron discovery of top does not exclude an exotic top with charge -4/3.
- Two methods:
 - m measure the momentum weighted b-jet charge $q_{bjet} = \frac{\sum_{i} q_{i} |\vec{j} \cdot \vec{p_{i}}|^{\kappa}}{\sum_{i} |\vec{j} \cdot \vec{p_{i}}|^{\kappa}}$

Mean b-jet charges :

$$q(b_{jet}) = -0.109 \pm 0.007$$
 and $q(\bar{b}_{jet}) = 0.112 \pm 0.007$

Measurement of top quark charge

Measure top quark charge with $\sigma(tty) \propto Q^2$

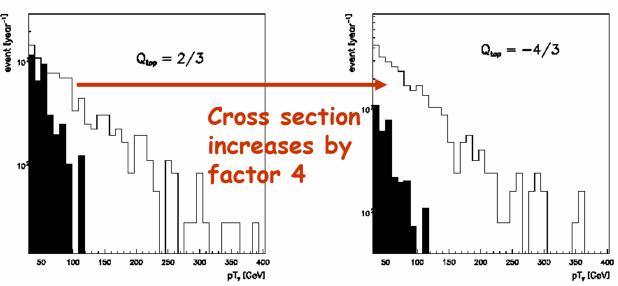


Figure 6: S vs. $p_{T\gamma}$ $(Q_t = \frac{2}{3})$

Figure 7: S vs. $p_{T\gamma}$ $(Q_t = -\frac{4}{3})$

reduce systematics by measuring ratio $\sigma(tt\gamma)/\sigma(tt)$

	Q = 2/3		Q = -4/3	
process	$\sigma_{seen}[fb]$	events	$\sigma_{seen}[fb]$	events
		(1 year)		(1 year)
${f pp} ightarrow {f t} ar{f t} \gamma$	7.81	78.1	24.81	248.1
$\mathbf{pp} o \mathbf{t}\mathbf{\bar{t}}; \; \mathbf{t} o \mathbf{Wb}\gamma$	0.62	6.2	0.244	2.4
Q_{top} indep. bkgd	6.65	66.5	6.65	66.5